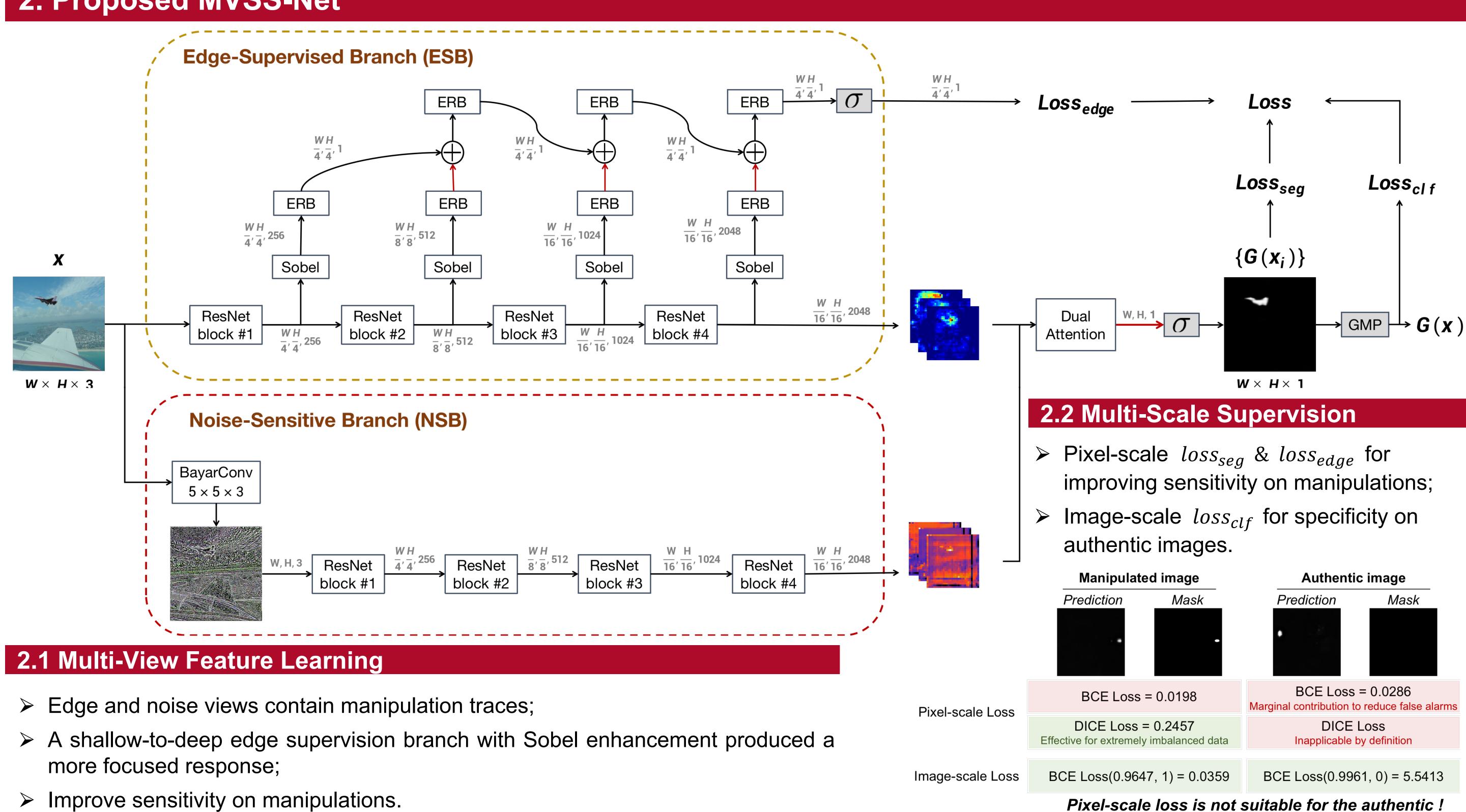
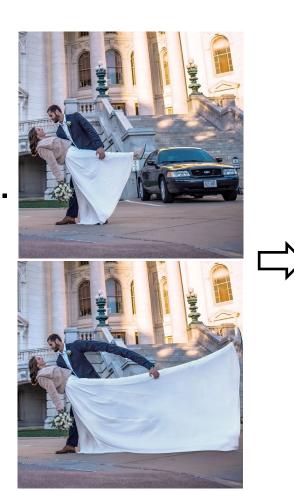

Image Manipulation Detection by Multi-View Multi-Scale Supervision

1. Summary

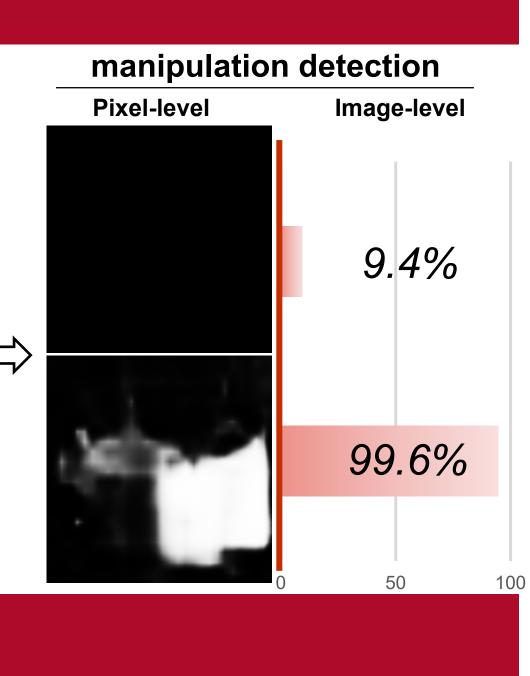

- > **Background**: Digital images are easily manipulated in a misleading manner. > Challenges
 - 1. Semantic-aware features lack **sensitivity** and generalizability in manipulated images;
 - 2. Authentic images are ignored by the prior art, leading to false alarm and poor specificity.

> Our Solution:

- 1. Multi-view feature learning for sensitivity on manipulations;
- 2. Multi-scale supervision to prevent false alarms on authentic.


> Our novelty: One model to obtain high sensitivity and specificity !

2. Proposed MVSS-Net



- \succ Improve sensitivity on manipulations.

Xinru Chen*, Chengbo Dong*, Jiaqi Ji, Juan Cao, Xirong Li AIMC Lab, Renmin University of China - Institute of Computing Technology, CAS

> MVSS-Net $| \Box >$

3. Main Results

3.1 Ablation Study on DEFACTO

Fixed threshold (0.5)

Setup	Pixel(F1)					Image	Com-F1				
	cpmv.	spli.	inpa.	MEAN	Sen.	Spe.	F1		~		
Seg	0.45	0.72	0.46	0.55	0.83	0.62	0.71	0.62			
Seg+Clf	0.34	0.67	0.38	0.46	0.77	0.78	0.77	0.58			
Seg+Clf+Noise	0.39	0.71	0.43	0.51	0.76	0.82	0.79	0.62			
Seg+Clf+Edge	0.41	0.72	0.44	0.52	0.77	0.81	0.79	0.63			
Seg+Clf+GSRNet	0.36	0.71	0.42	0.50	0.81	0.78	0.80	0.61			
Full setup	0.45	0.71	0.46	0.54	0.80	0.80	0.80	0.64			

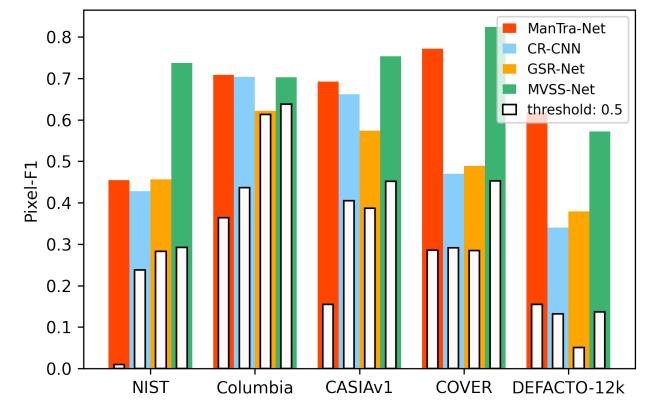
3.2 Generalization study on public benchmarks against SOTA

Sensitivity on manipulation

Using fixed threshold instead of optimal one calculated according to groundtruth is strict yet more practical.

Specificity on authentic

Method	Columbia			CASIAv1			COVER			DEFACTO-12k		
	Sen.	Spe.	F1	Sen.	Spe.	F1	Sen.	Spe.	F1	Sen.	Spe.	F1
ManTra-Net	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
CR-CNN	0.96	0.25	0.39	0.93	0.22	0.36	0.97	0.07	0.13	0.77	0.27	0.40
GSR-Net	1.00	0.01	0.02	0.99	0.01	0.02	1.00	0.00	0.00	0.91	0.00	0.00
MVSS-Net	0.67	1.00	0.80	0.62	0.97	0.75	0.94	0.14	0.24	0.82	0.27	0.41


Visualization

Github page: https://github.com/dong03/MVSS-Net

Multi-scale supervision (Seg+clf) is less sensitive on manipulation; Both edge (Seg+Clf+Edge) and noise (Seg+Clf+Noise) are helpful; Proposed ESB is superior to previous feature concatenation (Seg+Clf+GSRNet).

> SOTA works have poor specificity caused by false alarms. A joint evaluation on both Image-level and pixel-level F1 represents models' performances under real scenario.